Abstract
Abstract Reactive power is related to the type of power that does not consume energy but stores it. In the design of test machines, the utilization of this physical phenomenon would be very beneficial. Reactive power allows for the combination of power amplification with energy savings, making it an ideal principle for conducting long-term tests that involve high loads and prolonged energy consumption. This concept is illustrated in this work focusing test machines used in rotary testing procedures. Drive element pairs, which serve as component test objects, are primarily exposed to wear stress. These stressed element pairs are consequently integral parts of a tribological system. The underlying principles of power amplification and power feedback are explained from the perspectives of drive technology, systematic design, methodical design, and mechatronics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.