Abstract

Nowadays, productivity challenges in modern manufacturing systems have been the driving force in generating energy-efficient technologies in every industry, including diesel–electric locomotives. The diesel–electric locomotive is one of the most widely used methods in rail transportation, especially in North America. More precisely, the evolution of the electric transmission has allowed the locomotive’s effective tractive effort to increase its diesel engine horsepower. In this paper, we study a new way to improve the energy efficiency of diesel–electric trains using photovoltaic solar panels. This solution is suitable for reducing greenhouse gas emissions of the diesel–electric locomotive system, particularly in cold climates. We explore the amount of energy produced by the PV solar panels and compare it with that produced by the auxiliary diesel-generator during a train’s journey. This comparison clarifies the actual percentage of energy that solar panels can cover. Thus, this paper presents a validation of feasibility and profitability as a function of the train’s specific operating conditions and the meteorological data associated with their routes. Based on the results, the minimum annual fuel reduction of auxiliary generators allowed using PV solar panels is above 50% in all cases and wagon classes, proving this solution’s feasibility. Regarding the comparison, case 3 (Sept-Îles to Schefferville) and case 4 (Luxor to Aswan) are the best, with over 100% of the energy provided by PV solar panels in all the wagons’ classes. The payback period ranges from 2.5 years to 9.1 years, while the CO2 emission reduction’s revenues range from $460 to $998 per year/wagon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call