Abstract

Recent field measurements by Agrawal et al. have provided evidence of a shallow surface mixed layer in which the rate of dissipation due to turbulence is one to two orders of magnitude greater than that in a comparable turbulent boundary layer over a rigid wall. It is shown that predictions by Phillips of the energy lost by breaking surface waves in an equilibrium regime and laboratory measurements by Rapp and Melville of the mixing and turbulence due to breaking together lead to estimates of the enhanced dissipation rate and the thickness of the surface layer consistent with the field measurements. Wave-age-dependent scaling of the dissipation layer is proposed. Laboratory measurements of dissipation rates in both unsteady and quasi-steady breaking waves are examined. It is shown that an appropriately defined dimensionless rate of dissipation in unsteady breaking waves is not constant, but increases with a measure of the wave slope. Differences between dissipation rates in quasi-steady and unsteady breakers are discussed. It is found that measurements of the dissipation rate in unsteady breakers are consistent with independent estimates of the turbulent dissipation. The application of these results to models of dissipation due to breaking and air-sea fluxes is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.