Abstract

AbstractLiquid–bubble interaction, especially in complex two-phase bubbly flow under breaking waves, is still poorly understood. In the present study, we perform a large-eddy simulation using a Navier–Stokes solver extended to incorporate entrained bubble populations, using an Eulerian–Eulerian formulation for a polydisperse bubble phase. The volume-of-fluid method is used for free-surface tracking. We consider an isolated unsteady deep water breaking event generated by a focused wavepacket. Bubble contributions to dissipation and momentum transfer between the water and air phases are considered. The model is shown to predict free-surface evolution, mean and turbulent velocities, and integral properties of the entrained dispersed bubbles fairly well. We investigate turbulence modulation by dispersed bubbles as well as shear- and bubble-induced dissipation, in both spilling and plunging breakers. We find that the total bubble-induced dissipation accounts for more than 50 % of the total dissipation in the breaking region. The average dissipation rate per unit length of breaking crest is usually written as $b{\it\rho}g^{-1}c_{b}^{5}$, where ${\it\rho}$ is the water density, $g$ is the gravitational acceleration and $c_{b}$ is the phase speed of the breaking wave. The breaking parameter, $b$, has been poorly constrained by experiments and field measurements. We examine the time-dependent evolution of $b$ for both constant-steepness and constant-amplitude wavepackets. A scaling law for the averaged breaking parameter is obtained. The exact two-phase transport equation for turbulent kinetic energy (TKE) is compared with the conventional single-phase transport equation, and it is found that the former overpredicts the total subgrid-scale dissipation and turbulence production by mean shear during active breaking. All of the simulations are also repeated without the inclusion of a dispersed bubble phase, and it is shown that the integrated TKE in the breaking region is damped by the dispersed bubbles by approximately 20 % for a large plunging breaker to 50 % for spilling breakers. In the plunging breakers, the TKE is damped slightly or even enhanced during the initial stage of active breaking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call