Abstract

The temperature evolution of self-assembled phosphonic acid multilayers was investigated by energy dispersive X-ray reflectivity and angular-resolved reflectivity. Energy dispersive measurements were performed in an experimental setup specially designed for the X-ray fluorescence beamline of the Brazilian Synchrotron Light Laboratory. It allows the precise monitoring of phase transitions observed in organic thin film and multilayer systems. The studied multilayers – obtained from dip coating of a solution of octadecylphosphonic acid – present different bilayer periodicities of 50Å (straight bilayer) and 34Å (tilted bilayer). Energy dispersive and angular-resolved data evidence re-organization of the lamellar ordering of octadecylphosphonic acid multilayers as a function of temperature. The energy dispersive technique presents many advantages over conventional methods such as short acquisition time, possibility to vary external parameters and high flux, making it suitable for light scatterers as polymers and other organic molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.