Applied Energy | VOL. 86
Read

Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People’s Republic of China

Publication Date Nov 1, 2009

Abstract

Abstract This paper presents life-cycle-analysis (LCA) energy consumption (EC) and greenhouse gas (GHG) emissions of China’s current six biofuel pathways, which are: corn-derived ethanol (CE); cassava-derived ethanol (KE); sweet sorghum-derived ethanol (SE); soybean-derived bio-diesel (SB); jatropha fruit-derived bio-diesel (JB); and used cooking oil (UCO)-derived bio-diesel (UB). The tool utilized here is the WTW (Well-to-Wheels) module of Tsinghua-CA3EM model covering the entire lifecycle including: raw materials cultivation (or feedstock collection); fuel production; transportation and distribution; and application in automobile engines, compared with Conventional Petroleum-based gasoline and diesel Pathways (CPP). The results indicate: (1) the fossil energy inputs are about 1.0–1.5 times the energy contained in the fuel for the CE, SE and SB pathways, but 0.5–0.9 times for the KE, UB and JB pathways; (2) compared with CPP, the JB, KE and UB pathways can reduce both fossil fuel consumption and GHG emissions; the CE and SB pathways can only reduce fossil fuel consumption, but increase GHG emission; the SE pathway increases not only fossil fuel consumption but also GHG emission; and (3) the main factors inducing high EC and GHG emission levels include: high EC levels during the fuel production stage and high fertilizer application rates during the planting of raw feedstocks. Conclusions are that of the aforementioned biofuel pathways in (the) People’s Republic of China: (1) only the JB, KE and UB pathways have energy-saving...

Concepts

Greenhouse Gas Emission Corn-derived Ethanol Biofuel Pathways Used Cooking Oil Increase Greenhouse Gas Emission Greenhouse Gas Emission Reduction Feedstock Collection Republic Of China Life-cycle-analysis Fertilizer Utilization

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.