Journal of Computational Physics | VOL. 107
Read

Energy-Bounded Flow Approximation on a Cartesian-Product Grid over Rough Terrain

Publication Date Jul 1, 1993

Abstract

We construct a method for modelling of three-dimensional, time dependent, compressible fluid flow in a gravitational field on a rotating cartesian-product grid with a spatially rough metric that bounds solutions by the total initial physical energy. Specifically: (1) the total physical energy is an /2 norm on the model state and (2) this total energy cannot increase provided the timestep does not exceed CFL limits. In particular, the first property means that our measure of the energy is always positive unless the mass, momentum, and internal energy are all everywhere zero. These conditions guarantee that no error can grow unchecked. This is thought to be a desirable property, although only in the case of linear systems is it sufficient for convergence of a consistent approximation to the true solution. The great merit of this choice of norm is that the method is applicable to a wide variety of real physical problems because, even in complex circumstances, the total physical energy is conserved and each component of this energy is in limited supply. We first note that conservation of energy is equivalent to antisymmetry of a particular tendency operator. Energy-bounded approximations of fluid flow are then constructed either from antisymmetric finite difference operators, or from antisymmetric Galerkin operators. The method may be particularly useful when reliability in difficult conditions is needed. For example, when the viscosity must be small in order to simulate flow separation or turbulence, a model of viscous dissipat...

Concepts
Powered ByUnsilo

Total Physical Energy
Total Energy
Bell-shaped Mountain
Antisymmetric Operators
Compressible Fluid Flow
Rough Terrain
Conservation Of Energy
Total Initial Energy
Difficult Conditions
Limited Supply

Introducing Weekly Round-ups!Beta

Powered by R DiscoveryR Discovery

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between May 09, 2022 to May 15, 2022

R DiscoveryMay 16, 2022
R DiscoveryArticles Included:  2

Introduction: Climate change is a pervasive threat to global biodiversity and is expected to have profound effects on the resilience and abundance of ...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard