Abstract
In the case of far field earthquakes, structural failure often results from accumulated damage caused by cyclic effects and gradual accumulation of energy. This paper proposes an energy‐based seismic design method for steel eccentrically braced frames (EBFs) with two shear links at every story according to the energy balance concept. The proposed method is theoretically supported by hysteretic energy spectra and accumulated ductility ratio spectra according to the Chinese soil classification. Furthermore, the method can be used to clarify the relationship between cumulative hysteretic energy and one‐way pushover energy. For developing the method, it is assumed that all the hysteretic energy is dissipated by the shear links, column bases, and beam ends of the frames at both sides. Therefore, the parts outside the links, including beam segments, braces, and columns, are specially designed to perform elastically during an earthquake. Furthermore, a V‐scheme steel EBF with ten stories and three spans is designed. The seismic performances of the designed structure, such as story drift and energy dissipation, are evaluated by nonlinear static analysis and time‐history analysis. Finally, the reliability and accuracy of the proposed seismic design method are validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.