Abstract

An original approach based on energy balance between vapor bubble collapse, emitted pressure wave, and neighboring solid wall response was proposed, developed, and tested to estimate the aggressiveness of cavitating flows. In the first part of the work, to improve a prediction method for cavitation erosion (Fortes-Patella and Reboud, 1998, “A New Approach to Evaluate the Cavitation Erosion Power,” ASME J. Fluids Eng., 120(2), pp. 335–344; Fortes-Patella and Reboud, 1998, “Energetical Approach and Impact Efficiency in Cavitation Erosion,” Proceedings of Third International Symposium on Cavitation, Grenoble, France), we were interested in studying the pressure waves emitted during bubble collapse. The radial dynamics of a spherical vapor/gas bubble in a compressible and viscous liquid was studied by means of Keller's and Fujikawa and Akamatsu's physical models (Prosperetti, 1994, “Bubbles Dynamics: Some Things we did not Know 10 Years Ago,” Bubble Dynamics and Interface Phenomena, Blake, Boulton-Stone, Thomas, eds., Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 3–15; Fujikawa and Akamatsu, 1980, “Effects of Non-Equilibrium Condensation of Vapor on the Pressure Wave Produced by Collapse of a Bubble in Liquid,” J. Fluid Mech., 97(3), pp. 481–512). The pressure amplitude, the profile, and the energy of the pressure waves emitted during cavity collapses were evaluated by numerical simulations. The model was validated by comparisons with experiments carried out at Laboratoire Laser, Plasma et Procédés Photoniques (LP3-IRPHE) (Marseille, France) with laser-induced bubble (Isselin et al., 1998, “Investigations of Material Damages Induced by an Isolated Vapor Bubble Created by Pulsed Laser,” Proceedings of Third International Symposium on Cavitation, Grenoble, France; Isselin et al., 1998, “On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena,” J. Appl. Phys., 84(10), pp. 5766–5771). The efficiency of the first collapse ηwave/bubble (defined as the ratio between pressure wave energy and initial bubble potential energy) was evaluated for different bubble collapses. For the cases considered of collapse in a constant-pressure field, the study pointed out the strong influence of the air contents on the bubble dynamics, on the emitted pressure wave characteristics, and on the collapse efficiency. In the second part of the study, the dynamic response and the surface deformation (i.e., pit profile and pit volume) of various materials exposed to pressure wave impacts was simulated making use of a 2D axisymmetric numerical code simulating the interaction between pressure wave and an elastoplastic solid. Making use of numerical results, a new parameter β (defined as the ratio between the pressure wave energy and the generated pit volume) was introduced and evaluated for three materials (aluminum, copper, and stainless steel). By associating numerical simulations and experimental results concerning pitted samples exposed to cavitating flows (volume damage rate), the pressure wave power density and the flow aggressiveness potential power were introduced. These physical properties of the flow characterize the cavitation intensity and can be related to the flow hydrodynamic conditions. Associated to β and ηwave/bubble parameters, these power densities appeared to be useful tools to predict the cavitation erosion power.

Highlights

  • Despite the numerous and important works that have been developed in the field of cavitation erosion, the analysis and the prediction of erosion mechanisms remain a big challenge for researchers and industrial partners

  • Based on the results presented here above concerning the energy balance between pressure wave and material damage, the aim of this section is to evaluate cavitation intensity by analyzing pitted sample exposed to cavitating flows and gather validation data of our approach

  • Pressure waves generated during cavity implosion were studied, and characteristic parameters were calculated as a function of hydrodynamic conditions

Read more

Summary

Introduction

Despite the numerous and important works that have been developed in the field of cavitation erosion (for example, Refs. [1,2,3,4,5,6]), the analysis and the prediction of erosion mechanisms remain a big challenge for researchers and industrial partners. It is based on an energy balance between vapor structures collapses, emitted pressure waves, and material damage. Global physical model, this work presents a summary of some results presented previously in two conferences [8,9] In this first part of the work, we study energy transfers between spherical bubble collapses and the generated pressure waves. Making use of energy distributions, erosive efficiency gsolid/wave is defined and calculated for three materials (aluminum, copper, and stainless steel). Based on this approach, a prediction method of cavitation erosion is proposed and applied to analyze sample surfaces exposed to different cavitating flows

Bubble Dynamics
Bubble Model
Pressure Wave Simulations
Collapse Efficiency
Interaction Between Pressure Waves and Solid Boundaries
Energy Balance
The Material Used as a Sensor
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.