Abstract

Van Iterson's experiments show that cavitation erosion is produced by the collapse of minute air bubbles in water in a state of air supersaturation. This is contrary to the usual conception that cavitation erosion is due to the collapse of vapour bubbles. The author gives results of experiments which indicate that the bubbles which form and collapse at the stage of incipient cavitation in aerated water are air bubbles in a supersaturated state. The experiments also show that vapour bubbles which collapse in de-aerated water are in thermal equilibrium. It is shown that the collapse of bubbles in thermal equilibrium cannot cause erosion because the vapour pressure inside and the hydrostatic pressure surrounding the bubbles are balanced during collapse. The energy producing cavitation erosion is the free surface energy liberated by the collapse of the air bubbles. The final collapse velocity is the velocity of sound in water and the magnitude of the blow produced is of the order of 120 tons per sq. in. or more. The effect of these views on the interpretation of the model tests in cavitation tunnels and on the cavitation number is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.