Abstract
Quantifying the energy balance above plant canopies is critical for better understanding of water balance and changes in regional weather patterns. This study examined temporal variations of energy balance terms for contrasting canopies [corn (Zea mays L.) and soybean (Glycine max L. Merr.)]. We monitored energy balance for 4 years using eddy-covariance systems, net radiometers, and soil heat flux plates in adjacent production fields near Ames, Iowa. On an annual basis, soybean exhibited 20% and 30% lower sensible heat flux (H) and Bowen ratio than corn, respectively. As canopies developed, a gradual shift in turbulent fluxes occurred with decreasing H and increasing latent heat flux (LE), but with a more pronounced effect for corn. Conversely, during mid-growing season and as both canopies progressively senesced, H in general increased and LE decreased; however, soybean exhibited slightly greater LE and much lower H than corn. These temporal variations in magnitude and partitioning of turbulent fluxes translated into a pronounced energy imbalance for soybean (0.80) and an enhanced closure for corn (0.98) in August and September. These discrepancies could be directly associated with differences in momentum transport as shown by friction velocities of 0.34 and 0.28 m s−1 for corn and soybean, respectively. These results support influential roles of plant canopy on intensity and mode of surface energy exchange processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have