Abstract
Nowadays sensor plays an important role in the day today life. People uses wireless technology along with sensor for monitoring home held devices, security alerts, natural disasters alert, building supervision, industrial quality management, etc. Wireless Sensor Network (WSN) consists of thousands of economical and feasible disposable sensors, deployed in the environment to sense parameters related to the surroundings such as temperature, moisture level, pressure etc., Number of sensor nodes are connected in these networks for communication. Each nodes are self-organized, having the capacity of sense, process, and aggregate data. Energy utilization in WSN is major issue in networks for improving network lifetime. Conventional clustering schemes are created with static cluster heads that die past than the normal nodes that degrade the network performance in routing. It is very vital area to develop an energy aware clustering protocol in WSN to reduce energy consumption for increasing network life time. In this paper, a Energy Aware Clustering using Neuro-fuzzy approach (EACNF) is proposed to form finest and energy aware clusters. The proposed scheme consists of fuzzy subsystem and neural network system that achieved energy efficiency in forming clusters and cluster heads in WSN. EACNF used neural network that provide effective training set related to energy and density of all nodes to estimate the expected energy for Uncertain cluster heads. Sensor nodes with higher energy are trained with various location of base station to select energy aware cluster heads. Fuzzy if–then mapping rule is used in fuzzy logic part that inputs to form clusters and cluster heads. EACNF is designed for WSN that handling Trust factor for security to the network. EACNF used three metric such as transmission range, residual energy and Trust factor for improving network life time. The proposed scheme EACNF is compared with related clustering schemes namely Cluster-Head Election Mechanism using Fuzzy Logic and Energy-Aware Fuzzy Unequal Clustering. The experiment results show that EACNF performs better than the other related schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.