Abstract
Energy requirements for maintenance and growth were estimated by comparative slaughter in Omani male lambs during the hot summer months (July–October: maximum temperature, 48 °C). Weaned lambs (n = 10 per diet) were fed one of three totally mixed, 160 g CP/kg DM diets that contained 600, 400 or 200 g rhodesgrass hay/kg for low (9·98 MJ/kg, medium (10·3 MJ/kg) and high (11·4 MJ/kg) energy contents, respectively. All diets were balanced to meet the minimum nutritional needs for maximum growth. The trial lasted for 113–114 days. The purpose of having three diets was to induce a broad spectrum of growth rates that could be used in regression analysis (tested for linear, quadratic and exponential effects). Metabolizable energy (ME) intake was regressed on live weight (LW), empty body weight, tissue energy and tissue protein gain and vice versa. Coefficients of determinations were not significantly improved by quadratic or logarithmic regressions over linear relationships. Geometric mean regressions were used to control further biases due to major axis dependence when Y is regressed on X or vice versa. Based on tissue energy gain, the best estimates of ME required for maintenance (MEm) and gain (MEg) were 526 kJ/kg LW0·75/d and 42·1 kJ/kg LW0·75/g LW gain, respectively. Net energy values for maintenance (NEm) and gain (NEg) were 278 kJ/kg LW0·75/d and 20·6 kJ/kg LW0·75/g LW gain, respectively. These equations predicted MEm and NEm requirements that were similar to or slightly greater than those established by the US National Research Council (1985) and the UK Agricultural and Food Research Council (1993) for growing male lambs. The MEg and NEg requirements were substantially greater (by 43–89%) in this respect. Efficiency values were calculated as net energy available for maintenance or gain divided by the metabolizable energy available for maintenance or gain. The efficiency of metabolizable energy used for maintenance and gain was 0·50 and 0·52, respectively, and did not appear to be much different from values for other breeds of sheep in temperate climates. Dietary energy concentrations did not affect the efficiency of energy deposition. The data suggest that Omani sheep in hot climates have greater NEg requirements, and consequently MEg requirements, than other breeds of sheep in temperate climates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.