Abstract
In this paper, heating and humidification of air for space have been carried out by using a phase change material (PCM)-based solar-powered desiccant wheel air conditioning (SPDWAC) in winter. The analysis of the setup has been done at different air flow rates. At low and high air flow rates, system has mean thermal coefficient of performance of 0.121 and 0.172, respectively, and mean exergy efficiency of 0.0787 and 0.0846, respectively. The mean thermal coefficient of performance of the system at high air flow rate (127.23 kg h-1) is 1.42 times the low air flow rate (63.62 kg h-1) and average exergy efficiency of the system at high air flow rate is 1.07 times the low air flow rate. It is observed that with an increase in air flow rate, efficiency of the evacuated tube solar air collector (ETSAC) increases. The average efficiency of the ETSAC at high air flow rate is 15.60%. The maximum average energy efficiency (17.80%) and exergy efficiency (17.08%) of the PCM storage system have been obtained at high air flow rate. The overall performance of the system showed that the use of PCM storage is feasible to run the system in winter during the hours of darkness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have