Abstract

Abstract Current study is aimed at making the most appropriate design considering the dynamic energy, exergy and economic analysis of Ground Source Heat Pumps (GSHP). The energy required to heat and to cool a 200 m2 office in Istanbul is determined, and based on these data, the entering and leaving water and soil temperatures of horizontal Ground Heat Exchanger (GHE) are obtained numerically for a ten-year period with realistic boundary conditions using meteorological data. The results obtained from the numerical study are confirmed by GHE experimental setup built in Yildiz Technical University. The variations of COP, second-law efficiency and exergy destruction of each component of GSHP at both seasons of the first, fifth and tenth years are obtained for Radiant Wall Panel Unit (RW-PU), Floor Heating + Fan-Coil Unit (FH-FCU) and Radiator + Fan-Coil Unit (R-FCU) systems. At the end of the 10-year dynamic simulation period of the GSHP system, the average values of COP and second law efficiency for RW-PU, FH-FCU and R-FCU are found as 4.01, 3.37, 3.01, and 39.29%, 38.04%, 36.63%, respectively. Furthermore, considering the initial investment and operational costs of RW-PU, FH-FCU and R-FCU systems integrated into the GSHP system, an objective function is defined as an optimization parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call