Abstract
Electricity–water cogeneration power plants are an important tool for advancing sustainable water treatment technologies because they provide a cost-effective and environmentally friendly solution for meeting the energy and water needs of communities. By integrating power and water production, these technologies can reduce carbon emissions and help mitigate the impact of climate change. This work deals with the energy and exergy analysis of a cogeneration plant for electrical power generation and water desalination using real operational data. The power side is a pressurized water reactor (PWR) nuclear power plant (NPP), while the desalination side is a multi-effect distillation (MED) system with a thermo-vapor compressor (TVC) plant coupled with a conventional multi-effect plant (ME-TVC-MED). A mathematical model was implemented in MATLAB software and validated through a comparison with previously published research. The exergy analysis was carried out based on the second law of thermodynamics to evaluate the irreversibility of the plant and the subsystems. In this study, the components of the sub-systems were analyzed separately to identify and quantify the component that has a high loss of energy and exergy. According to the energy and exergy analyses, the highest source of irreversibility occurs in the reactor core with 50% of the total exergy destruction. However, turbines, steam generators, and condensers also contribute to energy loss. Further, the thermodynamic efficiency of the cogeneration plant was obtained as 35.38%, which is more effective than other systems. In the ME-TVC-MED desalination unit, the main sources of energy losses are located in the evaporators and the thermo-compressor (about 50% and 36%, respectively). Moreover, the exergetic efficiency of the ME-TVC-MED unit was found to be low at 6.43%, indicating a high degree of technical inefficiency in the desalination process. Therefore, many opportunities exist to improve the performance of the cogeneration system.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have