Abstract

Electric-driven heat pumps are one of the most encouraging systems that could support the raising of renewables contribution in civil sector energy consumption, especially with reference to the Countries with a high contribution of renewable energy sources in electricity generation mix. However, the evaluation of the effective energy and environmental performance of an electric heat pump meeting the space heating and cooling requests of a building has to consider several factors that affect the results. Among them great attention should be given to the variability of weather conditions in which the system operates, the changeability of the efficiency and environmental indicators of power grid. The analysis becomes more complex if the variation of these parameters is considered in terms of time and geographic location but it leads to the actual evaluation of the energy conversion system performance that is neglected by European Regulations. This paper presents an energy and environmental analysis of an electric-driven air-source heat pump providing the space heating and cooling needs of the same building located in two different geographical locations by means of a dynamic simulation performed in TRNSYS 17. The analysis is carried out considering the average and time-dependent values of the carbon dioxide emission factors for electricity and the power grid efficiency indicators evaluated by means of the real electricity generation data. In addition, the paper proposes the evaluation of the average and hourly energy and environmental parameters referred only to the electricity market zones in which the buildings are located. These indices are considered in the analysis too. The results have highlighted that the assessment based on average and high-resolution parameters, as well the evaluation based on indicators referred to electricity market zones only, could return very different outcomes leading to a significant overestimation or underestimation of the energy and environmental performance of the system based on the electric-driven heat pump. Finally, a further analysis has been carried out to determine how the results can vary considering the average value of the electric efficiency indicator suggested by Italian Regulations and that of other European Countries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.