Abstract
This thesis collects a selective set of outcomes of a PhD course in Electronics, Telecommunications, and Information Technologies Engineering and it is focused on designing techniques to optimize computational resources in different wireless communication environments. Mobile Edge Computing (MEC) is a novel and distributed computational paradigm that has emerged to address the high users demand in 5G. In MEC, edge devices can share their resources to collaborate in terms of storage and computation. One of the computational sharing techniques is computation offloading, which brings a lot of advantages to the network edge, from lower communication, to lower energy consumption for computation. However, the communication among the devices should be managed such that the resources are exploited efficiently. To this aim, in this dissertation, computation offloading in different wireless environments with different number of users, network traffic, resource availability and devices' location are analyzed in order to optimize the resource allocation at the network edge. To better organize the dissertation, the studies are classified in four main sections. In the first section, an introduction on computational sharing technologies is given. Later, the problem of computation offloading is defined, and the challenges are introduced. In the second section, two partial offloading techniques are proposed. While in the first one, centralized and distributed architectures are proposed, in the second work, an Evolutionary Algorithm for task offloading is proposed. In the third section, the offloading problem is seen from a different perspective where the end users can harvest energy from either renewable sources of energy or through Wireless Power Transfer. In the fourth section, the MEC in vehicular environments is studied. In one work a heuristic is introduced in order to perform the computation offloading in Internet of Vehicles and in the other a learning-based approach based on bandit theory is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.