Abstract

Oxygen ions are a major constituent of magnetospheric plasma, yet the role of oxygen in processes such as magnetic reconnection continues to be poorly understood. Observations show that significant amounts of energized O+ can be present in a magnetotail current sheet (CS). A population of thermal O+ only has a relatively minor effect on magnetic reconnection. Despite this, published studies have so far only concentrated on the role of the low-energy thermal O+. We present a study of magnetic reconnection in a thinning CS with energized O+ present. Well-established, three-species, 2.5D particle-in-cell (PIC) kinetic simulations are used. Simulations of thermal H+ and thermal O+ validate our setup against published results. We then energize a thermal background O+ based on published in situ measurements. A range of energization is applied to the background O+. We discuss the effects of energized O+ on CS thinning and the onset and evolution of magnetic reconnection. The presence of energized O+ causes a two-regime onset response in a thinning CS. As energization increases in the lower-regime, reconnection develops at a single primary X-line, increases time-to-onset, and suppresses the rate of evolution. As energization continues to increase in the higher-regime, reconnection develops at multiple X-lines, forming a stochastic plasmoid chain; decreases time-to-onset; and enhances evolution via a plasmoid instability. Energized O+ drives a depletion of the background H+ around the central CS. As the energization increases, the CS thinning begins to slow and eventually reverses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call