Abstract

Many in situ spacecraft observations have demonstrated that magnetic reconnection in the Earth's magnetotail is largely controlled by the pre-reconnection current sheet configuration. One of the most important thin current sheet characteristics is the preponderance of electron currents driven by strong polarized electric fields, which are commonly observed in the Earth's magnetotail well before the reconnection. We use particle-in-cell simulations to investigate magnetic reconnection in the 2D magnetotail current sheet with a finite magnetic field component normal to the current sheet and with the current sheet polarization. Under the same external driving conditions, reconnection in a polarized current sheet is shown to occur at a lower rate than in a nonpolarized current sheet. The reconnection rate in a polarized current sheet decreases linearly as the electron current's contribution to the cross-tail current increases. In simulations with lower background temperature, the reconnection electric field is higher. We demonstrate that after reconnection in such a polarized current sheet, the outflow energy flux is mostly in the form of ion enthalpy flux, followed by electron enthalpy flux, Poynting flux, ion kinetic energy flux, and electron kinetic energy flux. These findings are consistent with spacecraft observations. Because current sheet polarization is not uniform along the magnetotail, our results suggest that it may slow down reconnection in the most polarized near-Earth magnetotail and thereby move the location of reconnection onset downtail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call