Abstract

The adsorption mechanisms in layer-by-layer films of poly(o-methoxyaniline) (POMA) alternated with poly(ethene sulfonic acid) (PVS) are controlled by H-bonding, even for charged POMA where electrostatic interactions were expected to predominate. This is shown here by analyzing adsorption isotherms using three analytical models for adsorption, namely, Langmuir, Frumkin, and Fillippova models, and thermally stimulated desorption results, from which energies of interaction were estimated. The adsorption free energy is ca. −35 kJ/mol, whereas the activation energy for desorption obtained from thermally stimulated desorption was +75 kJ/mol. According to the three models, adsorption is favored when the number of POMA/PVS bilayers increases, consistent with the increase in the amount of adsorbed material and film roughness. The importance of H-bonding was confirmed by FTIR measurements and adsorption experiments at high pHs where POMA is no longer doped.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.