Abstract

Electronic structure calculations based on multiconfiguration wave functions are used to investigate a set of archetypal reactions relevant to O(3P) processing of hydrocarbon molecules and surfaces. These include O(3P) reactions with methane and ethane to give OH plus methyl or ethyl radicals, O(3P) + ethane to give CH3O + CH3, and secondary reactions of the OH product radical with ethane and the ethyl radical. Geometry optimization is carried out with CASSCF/cc-pVTZ for all reactions, and with CASPT2/cc-pVTZ for O(3P) + methane/ethane. Single-point energy corrections are applied with CASPT2, CASPT3, and MRCI + Q with the cc-pVTZ and cc-pVQZ basis sets, and the energies extrapolated to the complete basis set limit (CBL). Where comparison of computed barriers and energies of reaction with experiment is possible, the agreement is good to excellent. The best agreement (within experimental error) is found for MRCI + Q/CBL applied to O(3P) + methane. For the other reactions, CASPT2/CBL and MRCI + Q/CBL predictions differ from experiment by 1-5 kcal/mol for 0 K enthalpies of reaction, and are within 1 kcal/mol of the best-estimate experimental range of 0 K barriers for O(3P) + ethane and OH + ethane. The accuracy of MRCI + Q/CBL is limited mainly by the quality of the active space. CASPT2/CBL barriers are consistently lower than MRCI + Q/CBL barriers with identical reference spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.