Abstract
Herein, the thermochemical properties of five-membered rings heterocycles were studied employing the CCSD(T) methodology coupled with the correlation consistent basis sets and including corrections for relativistic and core-valence effects as well as anharmonicities of the potentials. For pyrrole, furan, imidazole, pyrazole, 1H-1,2,4-triazole, and 1H-tetrazole, the mean absolute deviation (MAD) of the \( \Updelta {\text{H}}_{{{\text{f}}, 2 9 8}}^{\text{o}} \), computed at the CCSD(T) level, is 0.5 kcal/mol with respect to the experimental values. In the case of 1H-1,2,3-triazole, 2H-1,2,3-triazole, 4H-1,2,3-triazole, 4H-1,2,4-triazole, 2H-tetrazole, and pentazole, we propose the following \( \Updelta {\text{H}}_{{{\text{f}}, 2 9 8}}^{\text{o}} \): 62.6, 59.2, 85.0, 54.2, 77.7, and 107.5 kcal/mol, respectively. For thiophene, we revisit our previous result and propose a value of 26.0 kcal/mol. The theoretical estimations were used to study the performance of the M06-2X and B2PLYP functionals. Also, the convergence toward the complete basis set limit (CBS) was analyzed. M06-2X did not show a smooth convergence toward the CBS limit. Particularly, for the cc-pVTZ and cc-pVQZ basis sets, some problems were detected. Yet, along the cc-pVQZ, cc-pV5Z, and cc-pV6Z basis sets, the TAE smoothly decreased. The diminution of the TAE upon increase in basis set was not expected because the opposite behavior is more frequently observed. The MAD of the total atomization energies determined at the M06-2X level was 0.42 kcal/mol, with respect to the CCSD(T) results. In the case of the double hybrid B2PLYP functional, a smooth convergence toward the CBS limit was detected, even though the performance seriously degradated when the basis set was increased. At the CBS limit, the MAD with respect to the CCSD(T) TAEs was 8.26 kcal/mol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.