Abstract

Transient protein-protein interactions are functionally relevant as a control mechanism in a variety of biological processes. Analysis of the 3D structure of protein-protein complexes indicates that water molecules trapped at the interface are very common; however, their role in the stability and specificity of protein homodimer interactions has been not addressed yet. To provide new insights into the energetic bases that govern the formation of highly hydrated interfaces, the dissociation process of bovine beta lg variant A at a neutral pH was characterized here thermodynamically by conducting dilution experiments with an isothermal titration calorimeter. Association was enthalpically driven throughout the temperature range spanned. DeltaH and deltaC(p) were significantly more negative than estimates based on surface area changes, suggesting the occurrence of effects additional to the dehydration of the contact surfaces between subunits. Near-UV CD spectra proved to be independent of protein concentration, indicating a rigid body-like association. Furthermore, the process proved not to be coupled to significant changes in the protonation state of ionizable groups or counterion exchange. In contrast, both osmotic stress experiments and a computational analysis of the dimer's 3D structure indicated that a large number of water molecules are incorporated into the interface upon association. Numerical estimates considering the contributions of interface area desolvation and water immobilization accounted satisfactorily for the experimental deltaC(p). Thus, our study highlights the importance of explicitly considering the effects of water sequestering to perform a proper quantitative analysis of the formation of homodimers with highly hydrated interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.