Abstract
We explore the energetics of microwaves interacting with a double quantum dot photodiode and show wave-particle aspects in photon-assisted tunneling. The experiments show that the single-photon energy sets the relevant absorption energy in a weak-drive limit, which contrasts the strong-drive limit where the wave amplitude determines the relevant-energy scale and opens up microwave-induced bias triangles. The threshold condition between these two regimes is set by the fine-structure constant of the system. The energetics are determined here with the detuning conditions of the double dot system and stopping-potential measurements that constitute a microwave version of the photoelectric effect.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have