Abstract

The energetics determining the distinct short-range order in two-dimensional (2D) monolayer Cu(x)Pd(1-x) surface alloys on a Ru(0001) substrate were investigated by Monte Carlo simulations and density functional theory calculations. Using a 2D lattice gas Hamiltonian based on effective pair interaction (EPI) parameters, the EPIs were derived for different Cu concentrations with Monte Carlo (MC) simulations by comparing with the atomic distributions obtained from atomic resolution STM images and the related Warren-Cowley short-range order parameters (Hoster et al., Phys. Rev. B, 2006, 73 165413). The ground state structures and mixing energies at 0 K derived from these EPIs agree well with mixing energies determined from DFT calculations of different ordered surface alloys. Additional MC simulations yield rather low transition temperatures which explain the absence of ordered 2D phases in the experiments. The consequences of our findings for the use of alloy surfaces and surface alloys as model systems for adsorption and catalytic reaction studies are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call