Abstract
Energetic-assisted scanning thermal lithography (SThL) was demonstrated with the addition of benzoyl peroxide (BPO) for patterning silver nanoparticles. SThL samples were prepared by spin-coating poly(methyl methacrylate) (PMMA) thin films preloaded with BPO and silver nitrate precursors. Localized thermal analysis via probe heating demonstrated that the BPO decomposition in the polymer film took place at the temperature of 80 °C. Above this temperature, the thermal probe initiated the decomposition of the peroxide, which resulted in the in situ discharge of exothermal energy to compensate the joule shortage and the rapid cooling in the SThL thin film samples. The additional joule energy thermally enhanced the synthesis of silver nanoparticles, which were patterned and embedded in the PMMA thin film. Surface plasmon resonance scattering of these silver nanoparticles was observed by dark-field optical microscopy, whereas the nanoparticle distribution was examined by transmission electron microscopy. Variations in the scanning probe temperatures and peroxide concentrations were carefully investigated to optimize the thermal lithography efficiency upon the addition of energetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.