Abstract

Electrical conductivity of thin solid films of PMMA with dispersed silver nanoparticles, synthesized by a novel method, was studied in dark conditions by changing the applied voltage and temperature and also under photoexcitation (by a mercury lamp, 125 W) at room temperature. Anomalous hysteresis in current–temperature characteristics during heating and cooling cycles was observed. The hysteresis-like behaviour was explained on the basis of the movements of molecules associated with different parts of a PMMA matrix and diffusion of silver nanoparticles in the PMMA matrix. Dark current in the PMMA films with dispersed silver nanoparticles has been observed to be higher than the corresponding current in the PMMA films without silver nanoparticles due to the creation of conduction paths by the silver nanoparticles/nanoclusters. The photoresponse in the thin solid films of PMMA with dispersed silver nanoparticles was the reverse of that observed in thin solid films of PMMA without silver nanoparticles. A decrease in photocurrent under illumination of light was observed due to the destruction of conduction paths by the illumination of light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call