Abstract

Energetic particle physics is studied in Alcator C-Mod in reactor relevant regimes with high density and equilibrated electron and ion temperatures. Stable Alfvén eigenmodes are excited with low-power active magnetohydrodynamic antennas in the absence of a significant energetic particle tail to directly measure the damping rate of the modes. Stable toroidal Alfvén eigenmode (TAE) damping rates between 0.5% < γ/Ω < 4.5% have been observed in diverted and limited plasmas. Alfvén eigenmodes are destabilized with high-power hydrogen minority ion cyclotron radio frequency (ICRF) heating (PICRF < 6 MW) in lower-density plasmas in the current rise and in relatively high-density ([bar]ne < 2.5 × 1020 m-3) H-mode plasmas, which creates an energetic hydrogen ion tail with calculated energies up to 400 keV. Low toroidal mode number (n < 4) unstable modes are observed in the current rise with magnetic pickup coils at the wall and phase contrast imaging density fluctuation measurements in the core. Observations of energetic particle modes or TAEs that decrease in frequency and mode number with time up to a large sawtooth collapse indicate that fast particles play a role in stabilizing sawteeth. Alfvén eigenmodes can also be used as diagnostics to precisely constrain the q profile and provide a qualitative measure of the fast particle distribution time evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.