Abstract

AbstractThe reflection of solar wind protons as energetic neutral atoms (ENAs) from the lunar surface has regularly been used to study the plasma‐surface interaction at the Moon. However, there still exists a fundamental lack of knowledge of the scattering process. ENA emission from the surface is expected to similarly occur at Mercury and will be studied by BepiColombo. Understanding this solar wind backscattering will allow studies of both Mercury's plasma environment as well as properties of the hermean surface itself. Here, we expand on previous simulation studies of the solar‐wind‐regolith interaction with 3D grains in SDTrimSP‐3D to compare the predicted scattering energies and angles to ENA measurements from the Moon by the Chandrayaan‐1 and IBEX missions. The simulations reproduce a backward emission toward the Sun, which can be connected to the geometry of the regolith grain stacking. In contrast, the ENA energy distribution and its Maxwellian shape is mostly connected to the solar wind velocity. Our simulations also correctly describe a lunar ENA albedo between 10% and 20% and support its decrease with solar wind velocity. We further expand our studies to illustrate how BepiColombo will be able to observe ENAs at Mercury using hybrid simulations of Mercury's magnetosphere as an input for the complex surface precipitation patterns. We demonstrate that the variable ion precipitation will directly influence ENA emission from the surface. The orbits of BepiColombo's Mercury Planetary Orbiter and Mercury Magnetospheric Orbiter/Mio spacecraft are shown to be suitable to observe ENA emission patterns both on a local and a global scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call