Abstract

Exciton states in molecular rings (resembling, e.g. the B850 ring from LH2 complexes of purple bacterium Rhodopseudomonas acidophila) with strong intermolecular interaction are still a question of interest [V. Sundström, T. Pullerits, R. van Grondelle, J. Phys. Chem. B 103 (1999) 2327]. In our theoretical model we use the ring of two-level systems, simulating, e.g., the bacteriochlorophylls B850. The dynamical aspects in ensemble of rings are reflected in optical line shapes of electronic transitions. The observed linewidths reflect the combined influence of different types of static and dynamic disorder. To avoid the broadening of lines due to ensemble averaging one uses the single-molecule spectroscopy technique to obtain a fluorescence-excitation spectrum. For zero disorder the exciton manifold features two non-degenerate and eight pairwise degenerate states. In the presence of energetic disorder the degeneracy of the exciton states is lifted and oscillator strength is redistributed among the exciton states. A satisfactory understanding of the nature of static disorder in light-harvesting systems has not been reached [S. Jang, S.F. Dempster, R.J. Silbey, J. Phys. Chem. B 105 (2001) 6655]. In the local site basis, there can be present static disorder in both diagonal and off-diagonal Hamiltonian matrix elements. Silbey et al. [J. Phys. Chem. B 105 (2001) 6655] pointed out several questions: is former enough or the latter should be included as well? If both are considered, then there remains a question about whether they are independent or correlated. The distribution of the energetic separation E ( k = ± 1 ) and relative orientation of the transition-dipole moments has been recently investigated [S. Jang, et al., J. Phys. Chem. B 105 (2001) 6655; C. Hofmann, T.J. Aartsma, J. Koehler, Chem. Phys. Lett. 395 (2004) 373]. In our present contribution we have extended such a type of investigation to four models of noncorrelated static disorder: (A) Gaussian disorder in the local exciton energies, (B) Gaussian disorder in the transfer integrals, (C) Gaussian disorder in radial positions of molecules, (D) Gaussian disorder in angular positions of molecules acting in concert with correlated diagonal or off-diagonal disorder, namely elliptical deformation and correlate our results with available experimental data [C. Hofmann et al., Chem. Phys. Lett. 395 (2004) 373].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call