Abstract
In the post-Moore's Law era, relying solely on hardware advancements for automatic performance gains is no longer feasible without increased energy consumption, due to the end of Dennard scaling. Consequently, computing accounts for an increasing amount of global energy usage, contradicting the objective of sustainable computing. The lack of hardware support and the absence of a standardized, software-centric method for the precise tracing of energy provenance exacerbates the issue. Aiming to overcome this challenge, we argue that fine-grained software energy attribution is attainable, even with limited hardware support. To support our position, we present a thread-level, NUMA-aware energy attribution method for CPU and DRAM in multi-tenant environments. The evaluation of our prototype implementation, EnergAt, demonstrates the validity, effectiveness, and robustness of our theoretical model, even in the presence of the noisy-neighbor effect. We envisage a sustainable cloud environment and emphasize the importance of collective efforts to improve software energy efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.