Abstract
Intracerebral hemorrhage (ICH) is a high mortality and disability stroke subtype. Destruction of the blood-brain barrier (BBB) is a crucial contributor to brain edema and neurological deficit after ICH. Triggering receptor expressed on myeloid cells 1 (TREM-1) has been reported to be expressed in endothelial cells, but its role in ICH remains unclear. This study aims to evaluate the role of TREM-1 on BBB permeability after ICH in mice. Two hundred and forty-two CD1 mice were used in this study. The ICH model was established by collagenase injection. LP17 was administered intranasally at 2 or 8 h after ICH to inhibit TREM-1. To explore the underlying mechanism, SYK activation CRISPR was administered intracerebroventricularly with LP17, and Anti-mouse TREM-1 rat IgG2a (a specific TREM-1 agonist) was injected intracerebroventricularly with R406 (a specific SYK inhibitor) intraperitoneally. Neurobehavioral outcome, brain water content, BBB permeability, and protein expression were evaluated. The expression level of the TREM-1 receptor increased rapidly as early as 6 h after ICH, and it was mainly expressed on the endotheliocytes in the neurovascular unit. Early and delayed administration of LP17 significantly decreased brain edema and improved neurobehavioral outcomes at 24 h after ICH. LP17 reduced the BBB permeability by increasing β-catenin, claudin-5 and ZO-1 expression. Furthermore, SYK activation CRISPR abolished the beneficial effect of LP17 on the expression of the above junction molecules. Meanwhile, R406 reversed the impact of the TREM-1 activator on the downregulation of β-catenin, claudin-5 and ZO-1 expression. This study demonstrated that TREM-1 deteriorated BBB permeability via modulating the expression of interendothelial junction molecules after ICH, and this regulation is partly mediated by the SYK/β-catenin signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.