Abstract

BackgroundThe modulation of neuroinflammation is a new direction that may alleviate the early brain injury after subarachnoid hemorrhage (SAH). Brain resident microglia/macrophages (Mi/MΦ) are the key drivers of neuroinflammation. Triggering receptor expressed on myeloid cells 2 (TREM2) has been reported to play a neuroprotective role by activating phagocytosis and suspending inflammatory response in experimental ischemic stroke and intracerebral hemorrhage. This study was designed to investigate the role of TREM2 on neuroinflammation and neuroprotective effects in a rat SAH model. MethodsAdult male Sprague-Dawley rats were induced SAH through endovascular perforation. Lentivirus vectors were administered by i.c.v. to induce TREM2 overexpression or knockdown 7 days before SAH induction. Short- and long-term neurobehavioral tests, western blotting, immunofluorescence, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining were performed to explore the neuroprotective role of TREM2 after SAH. ResultsThe expression of TREM2 elevated in a rat SAH model with a peak at 48 h after SAH and mainly expressed in Mi/MΦ in brain. TREM2 overexpression improved short- and long-term neurological deficits induced by SAH in rats, while TREM2 knockdown worsened neurological dysfunction. The rats with TREM2 overexpressed presented less neuronal apoptosis and more neuronal survival at 48 h after SAH, while the rats with TREM2 knockdown presented on the contrary. TREM2 overexpression manifested activated phagocytosis and suppressed inflammatory response, with the increase of CD206+/CD11b+ cells and IL-10 expression as well as the decrease of the infiltration of MPO+ cells and the expression of TNF-α, IL-1β. While TREM2 knockdown abolished these effects. The protein level of IRAK3, a negative regulatory factor of inflammation, was significantly elevated after TREM2 overexpression and declined after TREM2 knockdown. ConclusionsOur research suggested TREM2 played a neuroprotective role and improved the short- and long-term neurological deficits by modulating neuroinflammation after SAH. The modulation on neuroinflammation of TREM2 after SAH was related with the elevated protein level of IRAK3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call