Abstract
To test whether endothelium-derived nitric oxide (NO) regulates mitochondrial respiration, NO was pharmacologically modulated in isolated mouse hearts, which were perfused at constant flow to sensitively detect small changes in myocardial O2 consumption (MVO2). Stimulation of NO formation by 10 microM bradykinin (BK) increased coronary venous nitrite release fivefold to 58 +/- 33 nM (n = 17). Vasodilatation by BK, adenosine (1 microM), or papaverine (10 microM) decreased perfusion pressure, left ventricular developed pressure (LVDP), and MVO2. In the presence of adenosine-induced vasodilatation, stimulation of endothelial NO synthesis by BK had no effect on LVDP and MVO2. Also, inhibition of NO formation by NG-monomethyl-l-arginine (l-NMMA, 100 microM) did not significantly alter LVDP and MVO2. Similarly, intracoronary infusion of authentic NO <or=2 microM did not influence LVDP or MVO2 (-1 +/- 1%). Only when NO was >2 microM were contractile dysfunction and MVO2 reduction observed. Because BK-induced stimulation of endothelial NO formation and basal NO are not sufficient to impair MVO2 in the saline-perfused mouse heart, a tonic control of the respiratory chain by endothelial NO is difficult to conceive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.