Abstract

BackgroundAccumulating evidence supports that prostate cancer stem-like cells (PCSCs) play significant roles in therapy resistance and metastasis of prostate cancer. Many studies also show that nitric oxide (NO) synthesized by NO synthases can function to promote tumor progression. However, the exact roles of NOSs and NO signaling in the growth regulation of PCSCs and castration-resistant prostate cancer (CRPC) are still not fully understood.MethodsThe regulatory functions of NOS-NO signaling were evaluated in prostate cancer cells, especially in PCSCs enriched by 3D spheroid culture and CD133/CD44 cell sorting. The molecular mechanisms of NOS-NO signaling in PCSCs growth regulation and tumor metastasis were investigated in PCSCs and mice orthotopic prostate tumor model.ResultsEndothelial NOS (eNOS) exhibited a significant upregulation in high-grade prostate cancer and metastatic CRPC. Xenograft models of CRPC exhibited notable increased eNOS expression and higher intracellular NO levels. PCSCs isolated from various models displayed significant enhanced eNOS-NO signaling. Functional analyses demonstrated that increased eNOS expression could promote in vivo tumorigenicity and metastatic potential of prostate cancer cells. Characterization of eNOS-NO involved downstream pathway which confirmed that enhanced eNOS signaling could promote the growth of PCSCs and antiandrogen-resistant prostate cancer cells via an activated downstream NO-sGC-cGMP-PKG effector signaling pathway. Interestingly, eNOS expression could be co-targeted by nuclear receptor ERRα and transcription factor ERG in prostate cancer cells and PCSCs.ConclusionsEnhanced eNOS-NO signaling could function to promote the growth of PCSCs and also the development of metastatic CRPC. Besides eNOS-NO as potential targets, targeting its upstream regulators (ERRα and ERG) of eNOS-NO signaling could also be the therapeutic strategy for the management of advanced prostate cancer, particularly the aggressive cancer carrying with the TMPRSS2:ERG fusion gene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.