Abstract

Enhanced angiogenesis is a cancer hallmark and critical for colorectal cancer (CRC) invasion and metastasis. Upon exposure to proangiogenic factors, therefore, targeting tumor-associated proangiogenic factors/receptors hold great promise as a therapeutic modality to treat CRC, particularly metastatic CRC. Accumulating evidence from numerous studies suggests that tumor endothelial cells (ECs) are not only the target of proangiogenic factors, but also function as the cellular source of proangiogenic factors. Studies showed that ECs can produce different proangiogenic factors to participate in the regulation of angiogenesis process, in which ECs-derived interleukins (ILs) show a potential stimulatory effect on angiogenesis via either an direct action on their receptors expressed on progenitor of ECs or an indirect way through enhanced production of other proangiogenic factors. Although a great deal of attention is given to the effects of tumor-derived and immune cell-derived ILs, few studies describe the potential effects of vascular ECs-derived ILs on the tumor angiogenesis process. This review provides an updated summary of available information on proangiogenic ILs, such as IL-1, IL-6, IL-8, IL-17, IL-22, IL-33, IL-34, and IL-37, released by microvascular ECs as potential drivers of the tumor angiogenesis process and discusses their potential as a novel candidate for antiangiogenic target for the treatment of CRC patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.