Abstract
The efficient distribution of oxygen and metabolites is critical for embryonic development and growth as well as tissue homeostasis. This is achieved by endothelial cells forming and maintaining a closed, circulatory network of tubular blood vessels. Endothelial cells are highly plastic cells with the capability to generate diverse dynamic responses at different stages of vessel development in order to build vessel networks of tissue-specific patterns and morphologies. In this review, we discuss new conceptual advances gained from in vitro and in vivo models of angiogenesis on the control of endothelial cell dynamics. We highlight the complex interplay between mechanical cues, actin cytoskeleton and endothelial behaviours, and the emerging importance of hydrostatic pressure in complementing actin-dependent mechanisms to regulate endothelial cell mechanics and angiogenesis. Understanding these processes provides insights into vascular repair and regeneration mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.