Abstract

The use of a soft multi-fingered hand in handling fragile objects has been widely acknowledged. Nevertheless, high flexibility often results in decreased load capacity, necessitating the need for variable stiffness. This article introduces a new soft multi-fingered hand featuring variable stiffness. The finger of the hand has three chambers and an endoskeleton mechanism. Two chambers facilitate bending and swinging motions, whereas the third adjusts stiffness. An endoskeleton mechanism is embedded in the third chamber, and the friction between its moving parts increases as negative air pressure rises, causing the finger's stiffness to increase. This mechanism can alter its stiffness in any configuration, which is particularly useful in manipulating irregular-shaped fragile objects post-grasping. The effectiveness of the proposed soft multi-fingered hand is validated through five experiments: stiffness adjustment, finger stiffening under a specific orientation, bulb screwing, heavy object lifting, and bean curd grasping. The results demonstrate that the proposed soft multi-fingered hand exhibits robust grasping capabilities for various fragile objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.