Abstract

Soft grippers have good adaptability and flexibility for grasping irregular or fragile objects, and to further enhance their stiffness, soft grippers with variable stiffness have been developed. However, existing soft grippers with variable stiffness have the disadvantages of complex structure and poor interchangeability. Here, a soft gripper with modular variable stiffness is proposed that has flexible Velcro embedded in the bottom layer of the soft actuator and one side of the variable stiffness cavity respectively, and both the general and variable stiffness grasping modes are achieved by separation or combination. First of all, according to the neo-Hookean model and the assumption of constant curvature, a free bending model of the soft actuator is established and optimal structural parameters of the soft actuator are obtained by the Genetic Algorithm. Then, influence of the driving pressure on the soft actuator stiffness is investigated, and a mathematical model of the variable stiffness is established. Finally, correctness of the statics model and the stiffness model were verified by experiments. Experimental results indicate that the proposed soft gripper with modular variable stiffness structure has excellent adaptability and stability to different objects, outstanding load bearing capacity, and stiffness adjustment capability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call