Abstract

Abstract Cu–water nanofluid with carbon nanotubes is considered for the peristaltic flow in an endoscope. The peristaltic flow for nanofluid is modelled considering that the peristaltic rush wave is a sinusoidal wave that propagates along the walls of the tube. The governing equations for the proposed model are simplified by using the assumptions of long-wavelength and low Reynolds number. Exact solutions have been evaluated for velocity, temperature, and pressure gradient. Graphical results for the numerical values of the flow parameters, i.e. Hartmann number M, the solid volume fraction ϕ of the nanoparticles, Grashof number Gr, heat absorption parameter β, and radius of the inner tube ε, have been presented for the pressure difference, frictional forces, velocity profile, and temperature profile, and trapping phenomena have been discussed at the end of the article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call