Abstract

In this paper, we propose a clustering method with temporal ordering information for endoscopic image sequences. It is difficult to collect a sufficient amount of endoscopic image datasets to train machine learning techniques by manual labeling. The clustering of endoscopic images leads to group-based labeling, which is useful for reducing the cost of dataset construction. Therefore, in this paper, we propose a clustering method where the property of endoscopic image sequences is fully utilized. For the proposed method, a deep neural network was used to extract features from endoscopic images, and clustering with temporal ordering information was solved by dynamic programming. In the experiments, we clustered the esophagogastroduodenoscopy images. From the results, we confirmed that the performance was improved by using the sequential property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.