Abstract

Epithelial ovarian cancer (EOC) is the most lethal gynecological malignant tumor. Endoplasmic reticulum (ER) stress plays an important role in the malignant behaviors of several tumors. In this study, we established a risk classifier based on 10 differentially expressed genes related to ER stress to evaluate the prognosis of patients and help to develop novel medical decision-making for EOC cases. A total of 378 EOC cases with transcriptome data from the TCGA-OV public dataset were included. Cox regression analysis was used to establish a risk classifier based on 10 ER stress-related genes (ERGs). Then, through a variety of statistical methods, including survival analysis and receiver operating characteristic (ROC) methods, the prediction ability of the proposed classifier was tested and verified. Similar results were confirmed in the GEO cohort. In the immunoassay, the different subgroups showed different penetration levels of immune cells. Finally, we conducted loss-of-function experiments to silence TRPM2 in the human EOC cell line. We created a 10-ERG risk classifier that displays a powerful capability of survival evaluation for EOC cases, and TRPM2 could be a potential therapeutic target of ovarian cancer cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.