Abstract

Numerous reports have shown that mitochondrial dysfunctions play a major role in apoptosis of Leishmania parasites, but the endoplasmic reticulum (ER) stress-induced apoptosis in Leishmania remains largely unknown. In this study, we investigate ER stress-induced apoptotic pathways in Leishmania major using tunicamycin as an ER stress inducer. ER stress activates the expression of ER-localized chaperone protein BIP/GRP78 (binding protein/identical to the 78-kDa glucose-regulated protein) with concomitant generation of intracellular reactive oxygen species. Upon exposure to ER stress, the elevation of cytosolic Ca(2+) level is observed due to release of Ca(2+) from internal stores. Increase in cytosolic Ca(2+) causes mitochondrial membrane potential depolarization and ATP loss as ablation of Ca(2+) by blocking voltage-gated cation channels with verapamil preserves mitochondrial membrane potential and cellular ATP content. Furthermore, ER stress-induced reactive oxygen species (ROS)-dependent release of cytochrome c and endonuclease G from mitochondria to cytosol and subsequent translocation of endonuclease G to nucleus are observed. Inhibition of caspase-like proteases with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone or metacaspase inhibitor antipain does not prevent nuclear DNA fragmentation and phosphatidylserine exposure. Conversely, significant protection in tunicamycin-induced DNA degradation and phosphatidylserine exposure was achieved by either pretreatment of antioxidants (N-acetyl-L-cysteine, GSH, and L-cysteine), chemical chaperone (4-phenylbutyric acid), or addition of Ca(2+) chelator (1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid-acetoxymethyl ester). Taken together, these data strongly demonstrate that ER stress-induced apoptosis in L. major is dependent on ROS and Ca(2+)-induced mitochondrial toxicity but independent of caspase-like proteases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.