Abstract

Dendritic spines are actin-rich membrane protrusions that are the major sites of excitatory synaptic input in the mammalian brain, and their morphological plasticity provides structural basis for learning and memory. Here we report that endophilin A1, with a well-established role in clathrin-mediated synaptic vesicle endocytosis at the presynaptic terminal, also localizes to dendritic spines and is required for spine morphogenesis, synapse formation and synaptic function. We identify p140Cap, a regulator of cytoskeleton reorganization, as a downstream effector of endophilin A1 and demonstrate that disruption of their interaction impairs spine formation and maturation. Moreover, we demonstrate that knockdown of endophilin A1 or p140Cap impairs spine stabilization and synaptic function. We further show that endophilin A1 regulates the distribution of p140Cap and its downstream effector, the F-actin-binding protein cortactin as well as F-actin enrichment in dendritic spines. Together, these results reveal a novel function of postsynaptic endophilin A1 in spine morphogenesis, stabilization and synaptic function through the regulation of p140Cap.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.