Abstract
As with all nanomaterials, characterization of the surface chemistry of mesoporous silicon (PSi) is crucial for the development in its diverse applications. Nuclear magnetic resonance (NMR) is one of the most powerful methods to study the chemistry of nanomaterials, but it is currently underutilized with PSi due to low signal-to-noise ratios achieved with this material which lead to very long measurement times. Here we show that endogenous radicals exist in thermally carbonized PSi and demonstrate the feasibility of solid-state dynamic nuclear polarization (DNP) NMR without addition of organic radicals. Use of DNP NMR is demonstrated to highly improve the signal-to-noise ratio while significantly reducing the measurement times. This technique opens new possibilities for the use of more advanced NMR techniques allowing the detailed characterization of complex materials such as PSi. Furthermore, the chemical structure of thermally carbonized PSi is studied by complementary techniques, X-ray photoelectron sp...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.