Abstract
An overactive renin-angiotensin-aldosterone system (RAAS) has a central role in the pathogenesis of hypertension and cardiac hypertrophy, precursors of cardiac failure. Natriuretic peptides and NO acting through their second messenger, cGMP, increase natriuresis and diuresis, and inhibit renin release; however the mechanism by which this inhibition of the RAAS system functions is obscure. We recently reported cloning of the cDNA for type II cGMP-dependent protein kinase (cGK II), elucidated its first known function of inhibiting the cystic fibrosis transmembrane conductance regulator in rat intestine, and initially described its location in rat kidney juxtaglomerular (JG) cells, the ascending thin limb, and the brush border of proximal tubules. Here, we demonstrate inhibition of isoproterenol- or forskolin-stimulated renin release by 8-para-chlorophenylthio-cGMP (8-pCPT-cGMP), a selective activator of cGK, and prevention of this inhibition by a selective inhibitor of cGK, Rp-8-pCPT-cGMPS. In systems of differing complexity, inhibition by 8-pCPT-cGMP was nearly complete in isolated perfused kidney and microdissected afferent arterioles but only approximately 25% in isolated JG cells. Expression of either cGK II or cGK I in JG cells by using adenoviral vectors enhanced the inhibition of forskolin-stimulated renin release by 8-pCPT-cGMP to 50%. Our results indicate that cGK II, and possibly cGK I, can mediate cGMP inhibitory effects on renin release and are physiological components of the cGMP signal transduction system which opposes the RAAS.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have