Abstract

Endogenous opioids inhibit nervous system development by inhibiting the proliferation of certain neuronal and glial progenitors. To determine whether opioids affect the growth of preoligodendrocytes, the effects of the endogenous opioid [Met5]-enkephalin were examined in preoligodendrocytes in primary mixed-glial and preoligodendrocyte-enriched (> 98% pure) cultures. Proliferating preoligodendrocytes in mixed-glial or preoligodendrocyte-enriched cultures were continuously treated for a total of 40 h with either basal growth media (controls), 1 microM [Met5]-enkephalin, 1 microM [Met5]-enkephalin plus the opioid antagonist naloxone (3 microM), or naloxone alone (3 microM), and incubated in [3H]-thymidine (0.2 microCi/ml/4-6 h) after 34-36 h of opioid exposure. Opioid-dependent changes in DNA synthesis were assessed autoradiographically in O4-immunoreactive oligodendrocyte progenitors. Naloxone alone significantly decreased the rate of DNA synthesis and number of O4-immunoreactive preoligodendrocytes in mixed-glial cultures. However, naloxone and/or [Met5]-enkephalin did not affect DNA synthesis or the number of O4-immunoreactive preoligodendrocytes in cultures enriched in preoligodendrocytes. The results suggest that astrocytes, or perhaps another cell type, play a permissive role in opioid-dependent alterations in preoligodendrocyte proliferation. Endogenous opioids affect the genesis of neural cells by both direct and indirect mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.