Abstract

BackgroundPromotion of remyelination is a major goal in treating demyelinating diseases such as multiple sclerosis (MS). The recombinant human monoclonal IgM, rHIgM22, targets myelin and oligodendrocytes (OLs) and promotes remyelination in animal models of MS. It is unclear whether rHIgM22-mediated stimulation of lesion repair is due to promotion of oligodendrocyte progenitor cell (OPC) proliferation and survival, OPC differentiation into myelinating OLs or protection of mature OLs. It is also unknown whether astrocytes or microglia play a functional role in IgM-mediated lesion repair.MethodsWe assessed the effect of rHIgM22 on cell proliferation in mixed CNS glial and OPC cultures by tritiated-thymidine uptake and by double-label immunocytochemistry using the proliferation marker, Ki-67. Antibody-mediated signaling events, OPC differentiation and OPC survival were investigated and quantified by Western blots.ResultsrHIgM22 stimulates OPC proliferation in mixed glial cultures but not in purified OPCs. There is no proliferative response in astrocytes or microglia. rHIgM22 activates PDGFαR in OPCs in mixed glial cultures. Blocking PDGFR-kinase inhibits rHIgM22-mediated OPC proliferation in mixed glia. We confirm in isolated OPCs that rHIgM22-mediated anti-apoptotic signaling and inhibition of OPC differentiation requires PDGF and FGF-2. We observed no IgM-mediated effect in mature OLs in the absence of PDGF and FGF-2.ConclusionStimulation of OPC proliferation by rHIgM22 depends on co-stimulatory astrocytic and/or microglial factors. We demonstrate that rHIgM22-mediated activation of PDGFαR is required for stimulation of OPC proliferation. We propose that rHIgM22 lowers the PDGF threshold required for OPC proliferation and protection, which can result in remyelination of CNS lesions.

Highlights

  • Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease

  • RHIgM22 significantly enhanced tritium-labeled thymidine uptake in mixed glial cultures at concentrations of 1, 10 and 20 mg/ml compared to a human isotype control IgM or media

  • oligodendrocyte progenitor cell (OPC) were maintained in a defined media without PDGF or FGF-2 (Fig. S2 C). These results suggest that rHIgM22 does not induce OPC proliferation directly but perhaps via an indirect mechanism in mixed glial culture involving astrocytes and/or microglia

Read more

Summary

Introduction

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease. MS lesions are characterized by myelin loss, infiltration with microglia/macrophages and lymphocytes and increased deposition of astrocytic protein, but not astrocytic proliferation, leading to scar formation. Stimulation of repair is a major goal in MS and other demyelinating diseases. Promotion of remyelination is a major goal in treating demyelinating diseases such as multiple sclerosis (MS). The recombinant human monoclonal IgM, rHIgM22, targets myelin and oligodendrocytes (OLs) and promotes remyelination in animal models of MS. It is unclear whether rHIgM22-mediated stimulation of lesion repair is due to promotion of oligodendrocyte progenitor cell (OPC) proliferation and survival, OPC differentiation into myelinating OLs or protection of mature OLs. It is unclear whether rHIgM22-mediated stimulation of lesion repair is due to promotion of oligodendrocyte progenitor cell (OPC) proliferation and survival, OPC differentiation into myelinating OLs or protection of mature OLs It is unknown whether astrocytes or microglia play a functional role in IgM-mediated lesion repair

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call