Abstract

Nitric oxide (NO) has been implicated in many pathophysiological situations in the lung, including hypoxia/reoxygenation. This work seeks to clarify the current controversy concerning the double protective/toxic role of endogenous NO under hypoxia/reoxygenation situations in the lung by using a nitric oxide synthase (NOS) inhibitor, in a novel approach to address the problems raised from assaults under such circumstances. A follow-up study was conducted in Wistar rats submitted to hypoxia/reoxygenation (hypoxia for 30 min; reoxygenation of 0 h, 48 h, and 5 days), with or without prior treatment using the nonselective NOS inhibitor L-NAME (1.5 mM, in drinking water). Lipid peroxidation, apoptosis level, protein nitration, in situ NOS activity and NO production (NOx) were analyzed. This is the first work to focus on the time-course effects of L-NAME in the adult rat lung submitted to hypoxia/reoxygenation. The results showed that after L-NAME administration, in situ NOS activity was almost completely eliminated and consequently, NOx levels fell. Lipid peroxidation and the percentage of apoptotic cells rose at the earliest reoxygenation time (0 h), but decreased in the later period (48 h and 5 days). Also nitrated protein expression decreased at 48 h and 5 days posthypoxia. These results suggest that NOS-derived NO exerts two different effects on lung hypoxia/reoxygenation injury depending on the reoxygenation time: NO has a beneficial role just after the hypoxic stimulus and a deleterious effect in the later reoxygenation times. Moreover, we propose that this dual role of NO depends directly on the producer NOS isoform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.